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Abstract. We report some experience with optimization methods applied to an inverse light
scattering problem for spherical, homogeneous particles. Such particles can be identified from
experimental data using a least squares global optimization method. However, if there is

significant noise in the data, the ‘‘best’’ solution may not correspond well to the ‘‘actual’’
particle. We suggest a way in which the original least squares solution may be improved by
using a constrained optimization calculation which considers the position of peaks in the data.

This approach is applied first to multi-angle data with varying amounts of artificially intro-
duced noise and then to examples of single-particle experimental data patterns characterized
by high noise levels.

1. Introduction

Substantial advances have been made over the last hundred or so years in
the development of the theory of light scattering from particulate matter.
Computation of the properties of scattered electromagnetic fields – the
direct scattering problem – is now possible in many situations. Rigorous
solutions exist for particle types such as homogeneous and inhomogeneous
spheres, ellipsoids, cylinders with various cross-sections and generalized
axisymmetric particles. Of far greater practical importance, however, is the
determination of properties of scatterers from the knowledge of scattered
fields – the inverse scattering problem. This arises in applications, ranging
from astronomy and remote sensing, through aerosol and emulsion charac-
terization, to non-destructive analysis of single particles and living cells [1,
2, 3, 4, 5, 6, 7, 8].
The inverse problem has proved to be much harder to solve, even for

the simplest particle shapes. Lack of rigorous solutions has motivated the
development of methods based on approximate models of scattering, for
example, assuming that the particles are weak (Rayleigh–Debye) scatterers
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or that diffraction or even geometrical optics can adequately describe the
interaction process [3, 5, 9, 10, 11, 12]. However, when such methods are
inappropriate, empirical procedures have to be used which are based on
generating solutions to the direct problem (after making assumptions con-
cerning the shape, internal structure of the particle, etc.) and matching
these solutions to experimental data [1, 2, 4, 13, 14]. Combining empirical
and analytical (Eigen function) methods can provide particle size distribu-
tions as well as complex refractive indices under some constraining condi-
tions [12]. Such procedures can be slow, difficult to implement rigorously
and often require substantial computing resources. More rapid solutions
can be obtained using neural network methods which take advantage of
the capability of radial basis function neural networks to approximate mul-
tidimensional functions [15] and use one or two hidden-layer networks
trained by back-propagation [7, 8]. An analytical method which directly
yields particle radius but may eventually lead to a full inverse solution is
based on expanding scattering data in terms of Legendre or Gegenbauer
polynomials [16, 17]. Several approaches based on numerical optimization
have also been reported [18, 19, 20].
Experimental data are inevitably distorted by the presence of noise and

numerous sources of error, for example optical aberrations, non-linearity of
the detection system, multiple scattering or particle non-sphericity. All exist-
ing inversion algorithms are sensitive to such distortion to a greater or les-
ser extent, which results in error [3, 11]. This problem is especially acute in,
but not limited to, measurements on single particles. Therefore, the sensitiv-
ity of the inversion to error in input data should be properly considered for
all new techniques. The present paper focuses on an approach to inverse
light-scattering based on global optimization previously reported in [18, 19]
and introduces a refinement procedure which can sometimes be used to
compensate for the influence of noise in input data. This new approach is
then applied both to multi-angle data with varying amounts of artificially
introduced noise and also to representative examples of single-particle
experimental data sets some of which are characterized by high noise levels.
In choosing to use a global optimization approach for particle identifica-

tion, we are assuming that the inverse light-scattering problem for homoge-
neous spheres has a unique solution. If this were not so and the error
function had several global minima then there would still be ambiguity
about the true properties of the scattering particle. Mireles [21] has shown
that a unique solution does exist for the very closely related problem of infi-
nite circular cylinders; and this, together with other more intuitive reasons,
leads to a general consensus in the field of particle characterization that
multi-angle light scattering data can give unique solutions to the homoge-
neous sphere problem as long as a sufficient number of measurements is
available. Recent investigations confirm that this is the case [22]. On the
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other hand, the theoretical question of uniqueness of inverse scattering may
not be very relevant to practical problems of particle identification in which
there is the additional complication of accuracy and the discrete character
of experimental measurements. These complications may arise, for instance,
due to finite sampling density and aliasing, incompleteness of data, as well
as the presence of noise. Further discussion of these issues is available
elsewhere [15, 18, 19].
A good starting point for the development of methods for solving the

inverse light-scattering problem for small particles is the case of a homoge-
neous, isotropic, non-absorbing sphere. If a plane incident wave of known
wavelength and state of polarization and a known medium surrounding
the particle are assumed, the particle can be completely described using its
radius r and refractive index n. In the scattering geometry considered in
the present study (see Figure 1), the intensity of the light scattered by the
particle is measured in one plane only and can, therefore, be described by
a function of the scattering angle

I1ðhÞ ¼ uðh; r; nÞ ð1Þ
where h is defined as the angle between the direction of propagation of the
incident wave and the direction of observation. This arrangement leads to
a one-dimensional scattering pattern which is representative of the proper-
ties of the particle and has been used as a basis for characterization of sin-
gle particles and particle distributions in both routine and research
applications [1, 2, 3, 4, 5, 7, 8, 12].
More practical detail about such experimental measurements can be

found in [23]. A typical scattering pattern is shown in Figure 2.
The direct problem of computing a scattering pattern for a spherical parti-

cle can be solved using the series expansions of Lorenz–Mie theory [10]. We
now give a brief outline of the Lorenz–Mie model of intensity to indicate the
work involved in a typical function evaluation in the global optimization cal-
culations discussed in subsequent sections. Suppose the incident light has
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Figure 1. Scattering geometry.
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intensity I0 and wavelength in vacuo k. Suppose also that the refractive index
of the scattering medium is n0. Then the intensity of scattered light is given by

I1 ¼
I0

k2R2
jS1j2

where R is the radial coordinate, k ¼ 2pn0=k and, S1 is defined by

S1 ¼
X

j

2jþ 1

jð jþ 1Þ ðajpj þ bjsjÞ: ð2Þ

The values of pj and sj depend on the scattering angle h and are obtained
from recurrence relations involving Legendre polynomials Pj. Specifically

pj ¼ ð2j� 1ÞPj þ pj�2 sj ¼ jð jþ 1ÞPj � pj cos h

with initial conditions p0 ¼ 0;p1 ¼ 1; s0 ¼ 0; s1 ¼ cos h: The values of aj, bj
depend on Bessel–Ricatti functions

wjðxÞ ¼
ffiffiffi
x
p

Jjþ1=2ðxÞ vjðxÞ ¼
ffiffiffi
x
p

Yjþ1=2ðxÞ
where J,Y respectively denote half-order Bessel functions of the first and
second kinds. If we now define the relative refractive index

nr ¼
n

n0

and let njðxÞ denote the complex function wjðxÞ þ ivjðxÞ then

aj ¼
nrwjðnrxÞw0jðxÞ � wjðxÞw0jðnrxÞ
nrwjðnrxÞn0jðxÞ � njðxÞw0jðnrxÞ

and

bj ¼
wjðnrxÞw0jðxÞ � nrwjðxÞw0jðnrxÞ
wjðnrxÞn0jðxÞ � nrnjðxÞw0jðnrxÞ

:
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Figure 2. Scattering pattern py12log.
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The summation in Equation (2) continues until the imaginary parts of aj
and bj become sufficiently small.

2. Identification using Least-Squares Data Fitting

Suppose we have experimental measures of scattered light intensity

I1ðh1Þ; I1ðh2Þ; . . . ; I1ðhmÞ
and we wish to determine corresponding values for particle radius r and
refractive index n. A standard approach involves finding r and n to mini-
mize

E1 ¼
Xm

i¼1
ðI1ðhiÞ � k � uðhi; r; nÞÞ2 ð3Þ

where u is the function appearing in the Lorenz—Mie model, Equation
(1). The additional variable k appears because experimental measurements
usually determine relative intensities at each hi and so a scaling is necessary
to match the model values.
In practice, because the intensities vary widely in magnitude over the

range 0�OhiO180�, it may be advisable to consider an objective function
of the form

E2 ¼
Xm

i¼1
ðiðhiÞ � wðhi; r; nÞ � cÞ2; ð4Þ

where i denotes log I1, w denotes log u and c ¼ log k. Experimental results
are often presented in this form in order to give increased weighting to
scattering at large angles.
There are a number of optimization techniques which can be used to

minimize Equation (3) or (4). An obvious possibility is the Gauss–Newton
method which is designed to deal with functions of the form

FðxÞ ¼
Xm

i¼1
fiðxÞ2:

It uses the fact that

rFðxÞ ¼ 2JðxÞTfðxÞ and r2FðxÞ ¼ 2JðxÞTJðxÞ þ
Xm

i¼1
fiðxÞr2fiðxÞ

where fðxÞ ¼ ðf1ðxÞ; . . . ; fðmðxÞÞ
T and JðxÞ is the Jacobian matrix whose

ði; jÞ-th element is @fiðxÞ=@xj. If the minimum value of F is near-zero
and/or the subfunctions fi are near-linear the second term in r2FðxÞ may
be neglected and hence the iteration

xðkþ1Þ ¼ xðkÞ þ d ðkÞ ¼ xðkÞ � ½JðxðkÞÞTJðxðkÞÞ��1JðxðkÞÞTfðxðkÞÞ ð5Þ
can be regarded as an approximate form of the Newton method for mini-
mizing F(x). Practical implementations of the Gauss–Newton algorithm
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include a line search so that xðkþ1Þ ¼ xðkÞ þ adðkÞ, where a is a scalar chosen
to ensure Fðxðkþ1ÞÞ < FðxðkÞÞ.
The minimization of either E1 (or E2) can be regarded as a three-variable

or a two-variable problem. In the case of E1 we can write

@E1=@k ¼ �2
Xm

i¼1
uðhi; r; nÞ � ðI1ðhiÞ � k � uðhi; r; nÞÞ; ð6Þ

and since @E1=@k ¼ 0 at the minimum, we can obtain the optimal value of
k in terms of the other two variables as

k ¼
Pm

i¼1ðI1ðhiÞ � uðhi; r; nÞÞPm
i¼1 uðhi; r; nÞ2

: ð7Þ

Similarly, the optimal value for c in Equation (4) is

c ¼
Pm

i¼1ðiðhiÞ � wðhi; r; nÞÞ
m

: ð8Þ
We have discussed elsewhere [18, 19] the application of a Gauss–Newton

method to the minimization of Equations (3) and (4) in order to identify r
and n from perfect scattering data – i.e., values of iðhÞ which have been gen-
erated from the Lorenz–Mie model. In this relatively simple case, Equations
(3) and (4) both have a global minimum of zero (and hence the Gauss–
Newton method can be expected to work well). However, it turns out to be
difficult to obtain the correct values of r and n because Equations (3) and
(4) have many local minima. For instance, if we use perfect data derived
from the Lorenz–Mie model with n ¼ 1.525, r ¼ 1.475 then the function
(4) has six local minima within the region 1:475OnO1:575 and
1:375OrO1:575. In such a case, the region of convergence for the Gauss–
Newton method about the global solution is relatively small. In practice we
may not have good estimates of the optimum values of n and r and so we
will need to use a global rather than a local optimization technique.

2.1. GLOBAL OPTIMIZATION OF EQUATIONS (3) AND (4)

One possibility, considered in [19], is to use the Gauss–Newton method
within the frame-work of a multi-start approach due to Rinooy Kan and
Timmer [24, 25]. Essentially, this uses many local optimizations from differ-
ent starting points in order to seek all the minima within the region of
interest. The Rinooy Kan and Timmer algorithm includes tests (based on
cluster analysis) designed to avoid redundant local searches by rejecting
starting points which are too close to each other or are near to areas where
a local minimum has already been found. Termination occurs when the
number of minima actually found is sufficiently close to a Bayesian esti-
mate of the total number of minima.
In this paper we shall also use an alternative global optimization method

DIRECT [26]. DIRECT (which is an acronym for DIviding RECTangles)
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is a non-gradient method which minimizes a function F(x) in some chosen
hyperbox liOxiOui. It proceeds by systematic subdivision of this region
into smaller hyperboxes. This is done quite efficiently by only subdividing
boxes which pass a test for potential optimality.
DIRECT begins with a given hyperbox defined by its centre point, c0,

the value of the objective function, F0 ¼ Fðc0Þ, and the n vector of dis-
placements s0. These displacements are such that li ¼ c0i � s0i and
ui ¼ c0i þ s0i for i ¼ 1; . . . ; n. This initial hyperbox is then systematically
split into smaller ones, using the procedure subdivide described below. For
each hyperbox, j; ð¼ 1; . . . ; JÞ we have a centre cj (where the function value
is Fj) and a vector of semi-sides sj. Hyperboxes are grouped according to a
size parameter dj, which is the distance from centre to any corner. We shall
suppose that among the J hyperboxes there are only KJOJ different size
values.
When the procedure subdivide is applied to an existing hyperbox charac-

terized by ðcj;Fj; sj; djÞ it only shrinks the longest edges. If there is a unique
longest edge then DIRECT replaces the existing box j by three new ones,
constructed by trisecting the appropriate side. If several edges of hyperbox
j all have the same ‘‘longest’’ length, then the trisection process is repeated
for each of them. (It should be noted, however, that the boxes created by
establishing new centres parallel to the second and subsequent sides will be
smaller than the boxes created by division along the first one. It is sug-
gested in [26] that the order in which long edges are dealt with should be
based on some exploratory function evaluations, with a view to enclosing
the smallest new function values in the largest of the new hyperboxes).
At each iteration of DIRECT, some of the current hyperboxes

j ¼ 1; . . . ; J are selected for further subdivision. The aim is to explore the
whole region efficiently by only computing extra function values in regions
which can be termed ‘‘potentially optimal’’. Potentially optimal hyperboxes
are chosen via the procedure identify given below. We note first of all,
however, that we need only examine KJ of the hyperboxes – i.e., for each
of the different dj-sized candidates we need only consider the one whose
centre has the least function value.
We now explain how the procedure identify selects from the current set

of hyperboxes those which are worth further exploration. Suppose first that
X is a Lipschitz constant for the function F – i.e., that krFk < X. Then a
lower bound for F inside the hyperbox j is given by Fj ¼ Fj � Xdj. Hence
the most promising box would be the one for which Fj is smallest. This
argument, of course, assumes that a valid Lipschitz constant X is known –
which will not usually be the case. The basis of DIRECT is therefore to
consider whether there exists any Lipschitz constant such that box j could
contain a lower function value than any other box. Thus, box j is more
promising than box k if there exists a positive X such that
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Fj � Xdj < Fk � Xdk:

We note that no such X exists if dj ¼ dk and FjPFk. Hence, as mentioned
above, we only need to test the potential optimality of the box with size dj
the smallest F value. If dj > dk then box j can be potentially optimal only
if

X > Xmink ¼
Fj � Fk

dj � dk
;

while if dj < dk then box j the corresponding condition is

X < Xmaxk ¼
fj � fk
dj � dk

:

We can calculate Xmink or Xmaxk for the smallest-valued hyperbox for each
size dkð6¼ djÞ and then set Xmin ¼ maxfXminkg; Xmax ¼ minfXmaxkg. Box j
can then only be potentially optimal if Xmax > 0 and Xmin < Xmax.
Even if there is a valid range ½Xmin;Xmax� we can apply a further filter to

try and reduce the number of boxes to be subdivided. We only treat box j
as potentially optimal if it might produce a worthwhile decrease in Fmin,
the least function value found so far. Thus we test

Fj � Xmaxdj < Fmin � ejFminj
where e is a user-specified parameter. If this inequality fails then box j is
judged to be not worth further subdivision at the present time.
Successful experience with DIRECT on practical problems is reported in

[20, 27].

2.2. THE EFFECT OF NOISE IN EXPERIMENTAL DATA

We now consider how the global solution of Equation (4) can be affected
by the presence of noise in real-life experimental data. One obvious point
is that the global solution for noisy data will not now be characterized by
E2 ¼ 0. A consequence of this may be to cast doubt upon the connection
between the global minimum of Equation (4) and a true identification of
the particle. Consider for instance the real-life scattering dataset py12log

(Figure 2) which is discussed more fully in a later section.
Because this scattering pattern shows some truncation or flattening of

the intensity measurements in the region of h ¼ 0� and h ¼ 180�, the identi-
fication is based only on readings in the range 20�OhO160�. With this
data, the function (4) turns out to have (at least) three minima all of which
correspond quite well to prior knowledge about the particle which pro-
duced the pattern. These minima are:

n � 1:5032; r � 1:8014 giving E2 � 19:07
n � 1:4737; r � 1:8210 giving E2 � 19:62
n � 1:4909; r � 1:8219 giving E2 � 19:88
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Here the global solution is not very much better than its two nearby com-
petitors. In fact, the differences in the values of E2 are probably small in
relation to the experimental errors which cause the minimum of Equation
(4) to be so much greater than zero. Therefore we might not be sure that
the least value of E2 defines the particle very precisely.
The error function (4) for the dataset py12log is visualised in Figures 3

and 4 below.
In the contour plot – which shows the local minima quite well – the dark

areas represent sharp peaks. These can be seen more clearly in the surface
plot in Figure 4.
The dataset py12log provides an even more damaging piece of evidence

about the dangers of blindly associating the global minimum of Equation
(4) with an identification of the ‘‘actual’’ particle. By enlarging the search
region for the global optimization methods we find that there are two more
optima of E2 which are ‘‘better’’ than the ones quoted in the previous par-
agraph . These are :

n � 1:6604; r � 0:5328 giving E2 � 16:1
n � 0:8951; r � 0:4352 giving E2 � 12:2:

However, neither of these ‘‘solutions’’ is physically acceptable. The first is
inconsistent with what is known about the radius of the particle; and the
second is completely outside the bounds of possibility set by the experi-
mental conditions.
To look at the question of experimental noise in a more general way,

suppose that the particle has radius and refractive index r* and n* but that
there are errors ei (with zero mean and standard deviation rm) in the

1.475 1.48 1.485 1.49 1.495 1.5 1.505
1.795

1.8
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1.81

1.815

1.82

1.825

Figure 3. Contour plot of error function (4) for py12log.
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log-intensity measurements iið¼ wi þ eiÞ. If we calculate wi using the correct
value of x�ð¼ ðn�; r�; c�ÞÞ, the expected value of E2 is

E2ðx�Þ ¼
X

i

e2i ¼ m � r2
m ð9Þ

where m is the number of measurements. If we had an estimate of rm then
we might use it to put bounds on the value of E2 rather than trying, to
minimize it. (Indeed, if we make E2 ‘‘too small’’ then we may be modelling
the noise rather than the underlying intensity pattern). We can deduce a
plausible value for rm for a particular data set once we have found x̂ as
the global optimum of E2. If we assume experimental errors are normally
distributed, with zero mean then, by Equation (9), we can approximate the
standard deviation of the errors by the root-mean-square value

rm � E rms
2 ðx̂Þ ¼

ffiffi
ð

p
E2ðx̂Þ=mÞ:

Hence we may wish to consider solutions x ¼ ðn; rÞ such that

E rms
2 ðx̂ÞOE rms

2 ðxÞOð1þ sÞE rms
2 ðx̂Þ ð10Þ

for some small positive s. If we have a priori estimates �x1 and �x2 for the
refractive index and radius then, as suggested by Dixon [28] , we could
consider minimizing

Figure 4. Surface plot of error function (4) for py12log.
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e1ðxÞ ¼
X2

i¼1
ðxi � �xiÞ2 ð11Þ

subject to the constraints, Equation (10). This can be thought of as trying
to find a better match to our expectations about the solution without caus-
ing too much of an increase in the least-squares error function. For certain
particles a ‘‘good estimate’’ �x can sometimes be made – examples include
microbial cells – it seems inadvisable to rely overmuch on the availability
of prior information and in the next section we shall present a more gen-
eral approach.

2.3. USING PEAK-MATCHING IN IDENTIFICATION

If we do not have reliable initial estimates of n and r then we can use ideas
which mimic a visual approach to particle identification. There are occa-
sions when visual comparison of experimental and theoretical data, – i.e.,
exploiting intrinsic feature-selection and data-processing capabilities of the
human brain – can produce satisfactory results, even where least squares
methods fail [2]. In particular, it has been found that positions of intensity
peaks can be useful in particle identification procedures [2, 4, 14, 29]. As
an example of this, consider Figures 5 and 6.
Figure 5 shows the scattering pattern py12log (solid line) together with

the pattern produced by the Lorenz–Mie model with n ¼ 1.5032,
r ¼ 1.8014. Figure 6 gives a similar comparison between the dataset and
theoretical model when n ¼ 1.6604, r ¼ 0.5328. Although the dotted line in
Figure 6 is a better fit to the data in the simple least-squares sense, it is
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Figure 5. Theoretical and experimental scattering patterns for py12log.
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clear that it does not correspond at all well to the essential shape of the
given pattern. Hence we now consider a way of including peak-matching in
the solution of the inverse light-scattering problem.
For brevity we let ik denote the data value iðhkÞ ¼ log I1ðhkÞ. We also let

K be the set of indices of reference angles hk at which the given log-intensi-
ties satisfy

ik�2 < ik�1 < ik and ik > ikþ1 > ikþ2:

These conditions suggest the data has a peak near hk. (In practice, for
noisy data, this is more reliable than deducing peak positions simply on
the basis of ik > ik�1 and ik > ikþ1) If dh is the spacing between the h val-
ues in the data then we can estimate first and second derivatives by the sec-
ond order formulae

i0k ¼
ikþ1 � ik�1

2dh
and i00k ¼

ikþ1 � 2ik þ ik�1

dh2
:

More accurately we can use fourth-order formulae

i0k ¼
8ðikþ1 � ik�1Þ � ðikþ2 � ik�2Þ

12dh

i00k ¼
16ðikþ1 þ ik�1 � 2ikÞ � ðikþ2 þ ik�2 � 2ikÞ

4dh2
:

These have proved more effective in the numerical examples quoted later.
By Newtons method we can then deduce the peak position occurs at

ĥk � hk �
i0k
i00k
:

For all k 2 K, corresponding peaks in the model data will be at
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Figure 6. Theoretical and experimental scattering patterns for py12log.
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�hkðn; rÞ � hk �
w0ðn; r; hkÞ
w00ðn; r; hkÞ

where the expressions for w0 and w00 are similar to those for i0 and i00. We
can now define an error function

E3 ¼
X

k2K
ð�hkðn; rÞ � ĥkÞ2: ð12Þ

As an illustration we consider the dataset py12log again. At the least-
squares solution x̂ � ð1:5032; 1:8014Þ the value of Equation (12) is
E3 � 70:7: This is large compared with the corresponding E2 ¼ 19:07 and
suggests that a better identification might be obtained by seeking x ¼ ðn; rÞ
to solve a problem of the form

Minimize E3ðxÞ s.t E rms
2 ðxÞOð1þ sÞE rms

2 ðx̂Þ: ð13Þ
For small values of s, problem (13) can be seen as a way of seeking values
for radius and refractive index to give good agreement about the peak
positions while limiting the amount by which the overall error E2 can
exceed its minimum value.
Bearing in mind the fact that E2 (and perhaps E3) can be highly non-

convex we shall want to seek a global solution of Equation (13). One way
to do this is by applying an unconstrained global optimizer to an exact
penalty function. For Equation (13) we can use

F1ðxÞ ¼ E3ðxÞ þ qjmaxð0;E rms
2 ðxÞ � ð1þ sÞE rms

2 ðx̂ÞÞj ð14Þ
where q is a positive penalty parameter. Provided q is ‘‘sufficiently large’’,
the function (14) has a global minimum at the global solution of Equa-
tion (13). (In practice we minimize Equation (14) for an increasing
sequence of q values until we get the same feasible solution for two suc-
cessive values of q.)
Since, F1 is non-smooth we must use a non-derivative global optimiza-

tion method and a suitable candidate is DIRECT [26], already outlined in
an earlier section.

3. Tests with Artificial Data

In order to consider how problem (13) might be used in practice, we carry
out some preliminary tests using artificially noisy data. In the following
examples we have taken perfect data from the Lorenz–Mie model (with
n ¼ 1.525, r ¼ 1.475) and then superimposed different noise distributions
to create pseudo-experimental data. The noise distributions all have mean
zero but with different standard deviations. The names noise2*, noise3* dis-
tinguish two basic noise patterns; and the second subscript indicates the
standard deviation – i.e., noise* k has rm ¼ k · 0.15.
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In Table I, the first five columns give information about the solution
obtained by (global) minimization of the error function (4) – i.e., the
root-mean-square values of E2 and E3, the particle parameters n̂ and r̂
and the identification error defined as

D ¼
ffiffi
ð

p
ðn̂� 1:525Þ2 þ ðr̂� 1:475Þ2Þ:

The last two columns give the root-mean-square values of E2 and E3 corre-
sponding to n ¼ 1.525, r ¼ 1.475, the parameters of the ‘‘true’’ particle.
We comment first of all that the approach based on global minimization

of Equation (4) seems fairly robust. Even at high levels of noise we get
quite good identification of the actual particle. The worst results are for
datasets noise34, noise33, noise23 and noise24; and there are particularly
large values for E rms

3 at the computed least- squares solutions for noise22,

noise23 and noise24. For these three cases the solution of Equation (13)
might be expected to provide a better identification than that given by the
solution of Equation (4). On the other hand, if we compare the values of
E rms
3 in the final column with those in column two then we see that, in

several cases, the peak-matching errors are smaller at the least-squares
solution than at the true solution. In these instances it seems unlikely that
the use of Equation (13) will yield a better identification.
If we consider noise22 and solve Equation (13) with the constraint

E rms
2 ðxÞO0:3 we get n � 1:5247; r � 1:4755 with E rms

3 � 0:827. Since we
know the ‘‘true’’ solution we can see that this is an appreciable improve-
ment in the identification of the particle compared with that given by mini-
mizing Equation (4). However, even without such prior knowledge we can
infer that the solution of Equation (13) is better if we look at the relative
changes in E3 and E2. We let x̂ denote the global minimum of Equation
(4) and, ~x the solution of Equation (13) and consider the ratio

j ¼ E rms
3 ð~xÞ

E rms
3 ðx̂Þ

: ð15Þ

For this problem we find that j � 0:71, indicating that there has been
about a 30% improvement in peak-matching. This has been obtained at
the expense of a small (less than 0.3%) increase in the least-squares error

Table I. Errors at the least-squares and exact solutions of artificial problems

Problem E rms
2 ðx̂Þ E rms

3 ðx̂Þ n̂ r̂ D E rms
2 x̂� E rms

3 x̂�

noise21 0.1496 0.294 1.5244 1.4750 6� 10�4 0.150 0.295

noise31 0.1479 0.237 1.5237 1.4746 1.4 · 10)3 0.150 0.244

noise22 0.2993 1.166 1.5238 1.4750 1.2 · 10)3 0.300 0.863

noise32 0.2963 0.354 1.5220 1.4748 3 · 10)3 0.300 0.358

noise23 0.4491 1.366 1.5233 1.4750 1.7 · 10)3 0.450 0.876

noise33 0.4441 0.551 1.5193 1.4754 5.7 · 10)3 0.450 0.473

noise24 0.5988 1.680 1.5229 1.4751 2.1 · 10)3 0.600 1.179

noise34 0.5911 0.742 1.5161 1.4761 9 · 10)3 0.600 0.624
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function. Therefore it seems reasonable to regard ~x as a better solution to
the identification problem.
Of course, in a real problem, we would not know in advance that

E rms
2 ðxÞO0:3 is an appropriate limit to use in Equation (13). A more gen-

eral way of looking at the situation is suggested by the remark at the end
of the previous paragraph. The improvement in peak-matching due to
going from x̂ to ~x is given by

D3ð~xÞ ¼ 1� E rms
3 ð~xÞ

E rms
3 ðx̂Þ

while the loss of accuracy in overall data-matching is given by

D2ð~xÞ ¼
E rms
2 ð~xÞ

E rms
2 ðx̂Þ

� 1:

Since we want the change in E2 to be small relative to the change in E3 we
can replace the constraint in Equation (13) by the requirement that
D2ð~xÞ < eD3ð~xÞ where e is a small positive constant. Thus we obtain a more
general problem instead of Equation (13), namely

Minimize E3ðxÞ s.t.
E rms
2 ðxÞ

E rms
2 ðx̂Þ

� 1Oe ð1� E rms
3 ðxÞ

E rms
3 ðx̂Þ

Þ: ð16Þ

The global solution of this constrained optimization problem can be
obtained if we apply DIRECT to an exact penalty function of similar form
to Equation (14).
Table II shows the results of solving Equation (16) with e ¼ 0.01 for

some of the noisy datasets considered above. (For the other datasets the
refinement procedure makes no significant change to the original least-
squares solution x̂).
From our knowledge of the ‘‘true’’ solution to these particular examples

we can see that the refinement process gives a worthwhile improvement in
the computed estimates of n and r. It is worth noting that, on these exam-
ples at least, it is the estimate of refractive index more than the estimate of
radius that is improved by the use of Equation (16). Specifically, for
noise23 both the peak match and the accuracy of the estimated (n, r)
improve by about 40% while for noise24 a peak-match improvement of
about 37% yields a 48% reduction in the errors in (n, r). On the other

Table II. Errors at solutions of Equation (16) for artificial problems

Problem E rms
2 ð~xÞ E rms

3 ð~xÞ ~n ~r D

noise22 0.3 0.793 1.5249 1.4756 6 · 10)4

noise23 0.45 0.704 1.5254 1.4759 9.8 · 10)4

noise33 0.444 0.52 1.5200 1.4757 5 · 10)3

noise24 0.601 1.061 1.5256 1.4741 1.1 · 10)3

noise34 0.592 0.689 1.5173 1.4765 7.8 · 10)3
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hand, however, the refinement makes, at best, only small improvements to
n when the peak-matching errors at x̂ are relatively small. We can get
slightly better results from Equation (16) in the cases involving noise33 and
noise34 if we change e to 0.02. We then obtain for noise33 the results:

n � 1:5207; r � 1:4760 with E rms
2 � 0:445;E rms

3 � 0:501;D � 4:4� 10�3

while for noise34 we get

n � 1:5183; r � 1:4767 with E rms
2 � 0:592;E rms

3 � 0:661;D � 6:9� 10�3

In both cases the peak-match is improved by about 10% and the error in
the computed (n, r) is reduced by about 40%. This indicates that the choice
of e in Equation (16) may be somewhat problem dependent. If, for
instance, we use e ¼ 0.02 for the cases noise23 and noise24 then the refine-
ment process over-corrects and produces worse estimates of both n and r.
Notwithstanding these remarks, however, the experience reported in this
section seems sufficiently encouraging that we shall now turn our attention
to problems involving real-life experimental data.

4. Experimental Data Results

We now consider four sets of experimental data. The first two sets
(py12log, 1p29log) are scattering patterns for fungal spores and the second
two (n1log, p1log) are measurements from polystyrene microspheres. All
patterns were obtained from single particles suspended in water [2, 4], lead-
ing to the presence of distortion and/or noise at quite high levels in some
cases. In these realistic situations we have, at best, only a rough estimate
of the ‘‘true’’ solution.
Figure 2 shows the scattering pattern py12log. Knowledge of the original

experiment suggests that this particle has refractive index n » 1.5 and
radius r » 1.8 lm. As we observed earlier, the identification is based only
on data points in the range 20�–160� because the intensity measurements
appear to have been truncated at low and high scattering angles.
Figure 7 shows the scattering pattern lp29log in the range 20�–160�.

Prior knowledge in this case suggests a particle with n » 1.5 and
r » 1.5 lm.
The third data set, n1log, for which the expected values are n » 1.6 and

r » 1.0 lm, is shown in Figure 8. Here we only have reliable measurements
in the range 20�–140�.
The last data set, p1log is shown in Figure 9 where measurements are

confined to the range 10�–120�. The expected values of the refractive index
and radius in this case are n » 1.6 and r » 0.6 lm.
The last two patterns came from particles which were known to have

good sphericity and homogeneity of refractive index; the refractive index
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was larger than for the first two particles, leading to a relatively stronger
scattering pattern with respect to noise. In addition, n1log came from a lar-
ger particle than p1log, giving a further improvement in the signal-to-noise
ratio.

4.1. THE DATASET PY12LOG

Since we believe that the data comes from a particle with n » 1.5 and
r » 1.8, the ranges 1.4 O n O 1.6, 1.7 O r O 1.9 were chosen for the global
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Figure 8. Scattering pattern n1log.
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Figure 7. Scattering pattern lp29log.
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optimization of Equation (4). It turns out that there are 19 local optima in
this region. As already mentioned, the best three solutions are:

n � 1:5032; r � 1:8014 giving E rms
2 � 0:368;E rms

3 � 1:979
n � 1:4737; r � 1:8210 giving E rms

2 � 0:373;E rms
3 � 2:002

n � 1:4909; r � 1:8219 giving E rms
2 � 0:376;E rms

3 � 3:679

While these candidate solutions are relatively close in terms of E2, none of
them are very satisfactory in terms of the peak-matching error E3. There-
fore we solve problem (16), taking x̂ as the best of the three quoted min-
ima of E2 and using e ¼ 0.01. We get

n � 1:5007; r � 1:8002 giving E rms
2 � 0:371;E rms

3 � 0:522

Here the values of n and r have moved nearer to the expected value and,
as a more objective comment, the peak match error E rms

3 is reduced by
over 70% compared with what it was at the least-squares solution.
If we solve Equation (16) with x̂ taken as the second of the local optima

we obtain

n � 1:4993; r � 1:7989 giving E rms
2 � 0:376;E rms

3 � 0:372

In other words, peak-matching considerations have moved the solution sub-
stantially away from the second-best local minimum of Equation (4) and we
can now have more confidence that, to two decimal places at least, the
refractive index and radius of the particle can be taken as 1.50 and 1.80.

4.2. THE DATASET LP29LOG

Because of our expectations about this particle, the search ranges
1.4 O n O 1.6 and 1.3 O r O 1.7 were used for the global optimization of
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Figure 9. Scattering pattern p1log.
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Equation (4). At least 13 local minima exist in this region, of which the
best two are

n � 1:5428; r � 1:6218 giving E rms
2 � 0:3555;E rms

3 � 3:079
n � 1:5373; r � 1:4411 giving E rms

2 � 0:3562;E rms
3 � 0:884

These two solutions are very close in terms of E2, although the first is infe-
rior in terms of peak-matching. Both solutions are plausible in terms of
our limited prior knowledge about the particle.
When we solve Equation (16), using e ¼ 0.01 and taking x̂ as the better

of the local solutions above we obtain

n � 1:5448; r � 1:6240 giving E rms
2 � 0:359;E rms

3 � 0:431:

This gives about an 85% reduction in E rms
3 . Moreover, if we base Equation

(16) on the second-best candidate solution it produces virtually the same
result. Once again, we have been able to use peak-matching to distinguish
between two quite similar solutions to the identification problem and hence
to deduce that the refractive index and radius can be taken as about 1.54
and 1.62, respectively.

4.3. THE DATASET N1LOG

On the basis of a priori information, a search region 1.5 O n O 1.7,
0.8 O r O 1.5 was used for the global minimization of Equation (4). There
are 29 local minima in this box, but in this case the global solution is
clearly distinct from the rest. It is

n � 1:5869; r � 1:1082 giving E rms
2 � 0:1165;E rms

3 � 0:242:

If we take this point as x̂ and solve Equation (16) with e ¼ 0.01 we get no
significant change in the computed values of n and r which indicates that
peak-matching cannot improve this already quite good solution.

4.4. THE DATASET P1LOG

For this problem, the range for global optimization of Equation (4) was
1.5 O n O 1.7, 0.4 O r O 0.7. The result obtained is

n � 1:6537; r � 0:5811 giving E rms
2 � 0:17;E rms

3 � 0:818:

If we base problem (16) on this point and use e ¼ 0.01 we get the result

n � 1:6538; r � 0:5805 giving E rms
2 � 0:17;E rms

3 � 0:77:

This small shift in n and r represents only about a 5% improvement in
peak-matching compared with the original least-squares solution. Hence
we have a reasonable indication that the particle has already been quite
well identified by the basic least-squares approach.
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5. Discussion

We have considered a standard least squares approach to the solution of
an inverse light-scattering problem and noted that, for noisy data, it may
not always give satisfactory results. Hence we have considered an alterna-
tive technique using a constrained optimization problem (16) which is
based on the idea of minimizing a ‘‘peak-matching’’ function subject to
constraints on the least-squares error function (4). Some initial tests of
Equation (16) have been performed using data sets which include artificial
noise. In cases where the solution obtained by global optimization of
Equation (4) does not agree very well with the position of intensity peaks
in the data, Equation (16) has been shown to be quite successful in produc-
ing better estimates of refractive index and radius which give better corre-
spondence to the ‘‘shape’’ of the scattering data.
Based on these ideas, we have developed a composite approach to the

identification of particles from ‘‘real-world’’ experimental data, which may
be strongly distorted and/or contain high levels of noise. The first phase
finds the global optimum of Equation (4) to get a trial solution ðn̂; r̂Þ for
refractive index and radius. The constrained problem (16) is then solved to
find ð~n; ~rÞ to minimize a peak-matching error function subject to a restric-
tion on the permitted increase in the overall error function Equation (4).
This increase is in turn dependent on the amount of improvement in the
peak-matching error function.
The new composite approach performs quite well in compensating for

noise that is artificially imposed on ‘‘perfect’’ scattering data. However, it
is clear that fitting real experimental data is a more difficult problem. Fig-
ure 2, for example, shows that real data can be subject to distortions –
such as truncation of extreme values – which may not correspond very well
to the normally-distributed artificial noise applied to the perfect data in
Section 3. In practice, detailed information concerning noise levels and/or
filtration may be either unavailable or unreliable – as, for example, when
adaptive noise reduction procedures are used to allow dealing with variable
noise levels in raw data. The effects of the distortion may be only partly
alleviated by our strategy of basing the identification on a restricted range
of the data.
In using our refinement procedure on real-life examples we have found

that it can sometimes produce significant improvements to the least-squares
estimates of the particle parameters; but in other cases it makes little or no
difference to the results. The difficulty in assessing the effectiveness of the
changes that are (or are not) made is that we only know approximately
what the ‘‘right answer’’ should be! Comparison between the Lorenz–Mie
scattering patterns generated at the solutions of Equations (4) and (16)
shows that the differences are quite subtle. Repositioning of peaks at the
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solution of Equation (16) seems mainly to be restricted to the angular range
from about 80� to about 110�. Hence it is partly on the basis of measurably
useful performance on the artificial data that we are inclined to believe that
the refined solutions from Equation (16) are in fact better than the ones
from the original least-squares approach. Conversely, if refinement based
on Equation (16) does not make a significant change to the solution then
we take it as some degree of confirmation that the particle has been identi-
fied reasonably well. We can say that the use of Equation (16) has helped to
resolve ambiguities in the solutions obtained using Equation (4) alone.
Of course, it is not only the presence of noise which adversely affects

solutions to the inverse light-scattering problem. Some difficulties may arise
due to the common practice of fitting intensity data in logarithmic form, as
this type of scaling can have the undesirable effect of emphasizing noise.
Since evidence has recently been provided that logarithmic scaling can be
inferior to linear scaling, future studies should examine the benefits of
using linearly scaled data with various angular weighting functions, such as
sinðhÞ4 [15].
Another source of difficulty in identifying real particles from experimen-

tal data is of course that our scattering model is strictly appropriate for
homogeneous, spherical particles. We are not alone in making the working
assumption that the Lorenz–Mie model will be adequate for practical pur-
poses [1, 8, 13, 29]. Other models exist, however, such as the one describing
a coated sphere – i.e., a particle which has one refractive index in an outer
‘‘shell’’ and a different refractive index from the centre out to a radius r2.
Such a particle is therefore described by four parameters and it is possible
that this somewhat more complex model could be adjusted by an optimiza-
tion process to match physical data more closely, whatever form of error
criterion is being used. It would not add significantly to the difficulty of
the problem to increase the number of variables by two. Although the
number of shapes for which scattering solutions can be obtained is limited,
there are other forms for which rigorous solutions exist, such as ellipsoids.
The extension of all the techniques used in this paper to deal with coated
spherical or ellipsoidal particles would be a worthwhile investigation.
Finally, the study confirms the intuitive assertion that while a small

number of data points can be used for accurate inversion of angular scat-
tering data in the case of low-noise input – about 10 points for a two-
parameter solution with an average accuracy of 0.1% [15] – a much greater
amount of data may be needed when significant levels of noise are present.
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